Traffic Assignment Based on Parsimonious Data: The Ideal Flow Network
2019
- 3Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage3
- Abstract Views3
Conference Paper Description
Traffic assignment models are used to estimate and distribute flows in a road network so that congestion and travel time delay are minimized. However, most of these models require the costly origin-destination (OD) data. In this paper, through the ideal flow network (IFN) and the maximum entropy principle, traffic flows can be estimated even with limited road network data. The macro level OD matrix is mathematically transformed into micro level OD on each intersection, which yields richer transportation structure data such as capacity and lane width. When data available is limited to only a few links or intersections, the remaining missing data can be set by computing for the stochastic matrix from the capacity ratio. Even if the capacity ratio is not available, the connectivity of the road network structure can be used to derive the stochastic matrix. With this characteristic of the IFN, even with limited and parsimonious data that can be collected from any link or intersection using a video camera, GPS, or any ITS sensing device, link flows of an entire network can be updated dynamically. Link flow results using IFN are almost the same as actual results, which is illustrated using the Sioux Falls transportation network.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know