Simple, Defensible Sample Sizes Based on Cost Efficiency -- With Discussion and Rejoinder
2009
- 1,316Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,316
- Downloads851
- Abstract Views465
Article Description
The conventional approach of choosing sample size to provide 80% or greater power ignores the cost implications of different sample size choices. Costs, however, are often impossible for investigators and funders to ignore in actual practice. Here, we propose and justify a new approach for choosing sample size based on cost efficiency, the ratio of a study’s projected scientific and/or practical value to its total cost. By showing that a study’s projected value exhibits diminishing marginal returns as a function of increasing sample size for a wide variety of definitions of study value, we are able to develop two simple choices that can be defended as more cost efficient than any larger sample size. The first is to choose the sample size that minimizes the average cost per subject. The second is to choose sample size to minimize total cost divided by the square root of sample size. This latter method is theoretically more justifiable for innovative studies, but also performs reasonably well and has some justification in other cases. For example, if projected study value is assumed to be proportional to power at a specific alternative and total cost is a linear function of sample size, then this approach is guaranteed either to produce more than 90% power or to be more cost efficient than any sample size that does. These methods are easy to implement, based on reliable inputs, and well justified, so they should be regarded as acceptable alternatives to current conventional approaches.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know