Combining Predictors for Classification Using the Area Under the ROC Curve
2004
- 3,397Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage3,397
- Abstract Views2,723
- 2,723
- Downloads674
Article Description
We compare simple logistic regression with an alternative robust procedure for constructing linear predictors to be used for the two state classification task. Theoritical advantages of the robust procedure over logistic regression are: (i) although it assumes a generalized linear model for the dichotomous outcome variable, it does not require specification of the link function; (ii) it accommodates case-control designs even when the model is not logistic; and (iii) it yields sensible results even when the generalized linear model assumption fails to hold. Surprisingly, we find that the linear predictor derived from the logistic regression likelihood is very robust in the following sense: it yields prediction performance comparable with our theoretically robust procedure when the logistic model fails and even when the form of the linear predictor is incorrectly specified. This raises some intriguing questions about using logistic regression for prediction. Some preliminary explanations are given that draw from recent literature.Next we suggest that it may not be necessary to fit the linear function over the whole predictor space to achieve adequate classification properties. Procedures that restrict modeling to a subspace defined by minimally acceptable false-positive and false-negative error rates are suggested. We find that relaxing linearity assumptions to a subspace infers further robustness and that the logistic likelihood calculated over the restricted region provides a robust objective function for determining classification rules.Overall, our new procedure performs well but not substantially better than logistic regression. Further work is warranted to clarify the relationship between the two conceptually distinct procedures, and may provide a new conceptual basis for using the logistic likelihood to combine predictors.Note: This Working Paper is a revised version of the previously posted "Robust Binary Regression for Optimally Combining Predictors."
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know