A multispecies assessment of climate change threats to salmonids across their life cycle
2014
- 13Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage13
- Abstract Views13
Artifact Description
During their life cycle, salmonids experience conditions in freshwater, estuarine, and marine habitats, exposing them to numerous climate change threats. The extent to which different species utilize different habitat types and habitat-specific climate change risks should result in differential overall vulnerability of these species to climate change, but most previous vulnerability assessments have focused only on particular life stages for particular species, hampering our ability to protect, restore stocks and their habitats to maximize species portfolios in river systems. We performed a life cycle-based risk assessment of climate change threats for nine species of salmonids (species within Oncorhynchus, Salvelinus, and Prosopium genera) inhabiting the Skagit River system, which is vulnerable to the panoply of climate impacts forecasted for the Pacific Northwest. The risk assessment integrated both species-specific intensity and exposure and incorporated uncertainty. We found that while climate change threats existed across all habitats inhabited by these species, the greatest threats to all species were associated with projected changes in the extremes of freshwater flow (high incubation flows, low summer flows). These results suggest that restoration strategies targeting restoration of floodplain function will be most effective for reducing the most serious threats for a broad portfolio of salmonids inhabiting the Skagit River, although other climate adaptation strategies may provide additional benefits to other suites of species.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know