Guidance, Navigation and Control of a Fly-By-Wire Transport Category Airship Designed for Hover Cargo Delivery
2011
- 281Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage281
- Downloads203
- Abstract Views78
Thesis / Dissertation Description
The purpose of this thesis is to develop fly-by-wire pilot controls for a transport category airship propelled with six thrust vectoring engines, and to develop control laws to maintain position, heading, and attitude during hover and cargo operations. Owing to the large body area, most airships require that they be pointed into the wind to maintain their position. This research aims at controlling an airship attitude and position during hover cargo delivery, irrespective of the wind direction.Control laws were developed for two primary modes of the airship: Flight (High Speed Mode) and Hover (Cargo Delivery Mode). Different sets of pilot controls were developed for each mode, oriented towards reduced pilot work load and simplicity of operation. A proof of concept sub-scale model of the airship was built and flown in an indoor hangar environment. An Attitude Heading Reference System (AHRS) system was implemented using Inertial Measuring Unit (IMU) and a Magnetometer. Indoor positioning of the airship was achieved using target LEDs, and applying robotic vision techniques such as motion detection, color blob analysis, and stereo vision. The developed control laws were tested during indoor flight tests, and conclusions were drawn regarding their feasibility.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know