Classification of Acoustic Emission Signals from an Aluminum Pressure Vessel Using a Self-Organizing Map
1995
- 226Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage226
- Downloads203
- Abstract Views23
Thesis / Dissertation Description
Acoustic emission nondestructive testing has been used for real-time monitoring of complex structures. All of the structures were made of materials at least 0.070 inch thick. The purpose of this research was to demonstrate the feasibility of using neural networks to classify acoustic emission signals gathered from a pressure vessel made of 2024-T3 aluminum 0.040 inches thick, i.e. thin aluminum sheet. AE waveforms were recorded during fatigue cycling of one pressure vessel using a wide band transducer and a digital oscilloscope connected to a computer. The source for each signal was determined using two narrow band transducers and a LOCAN-AT data acquisition system. The power spectrum was calculated for each waveform. A Kohonen self-organizing map (SOM) was used to cluster the spectra. The network clustered the data on a two-dimensional feature space according to the source of the signal. A total of 3,600 power spectra were used to train the neural network, and 1,800 were used to test the network. Initially there was overlap between the clusters on the two-dimensional feature space; however, this was found to be due to human error. The SOM itself correctly classified all of the signals.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know