Quantifying Relevance of Mobile Digital Evidence as They Relate to Case Types: A Survey and a Guide for Best Practice
Journal of Digital Forensics, Security and Law, Vol: 9, Issue: 3
2014
- 1Citations
- 1,022Usage
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Usage1,022
- Downloads755
- Abstract Views267
- Captures28
- Readers28
- 28
Article Description
In this work, a survey was conducted to help quantify the relevance of nineteen types of evidence (such as SMS) to seven types of digital investigations associated with mobile devices (MD) (such as child pornography). 97 % of the respondents agreed that every type of digital evidence has a different level of relevance to further or solve a particular investigation. From 55 serious participants, a dataset of 5,772 responses regarding the relevance of nineteen types of digital evidence for all the seven types of digital investigations was obtained. The results showed that (i) SMS belongs to the most relevant type of digital evidence for all the seven types of investigations; (ii) MMS belongs to the most relevant type of digital evidence for all the types of digital investigations except espionage and eavesdropping where it is the second most relevant type of digital evidence; (iii) Phonebook and Contacts is the most relevant type of digital evidence for all types of digital investigations except child pornography; (iv) Audio Calls is the most relevant type of digital evidence for all types of digital investigations except credit card fraud and child pornography; and (v) Standalone Files are the least relevant type of digital evidence for most of the digital investigations. The size of the response dataset was fairly reasonable to analyze and then delineate by generalization, relevance based best practices for mobile device forensics, which can supplement any forensics process model, including digital triage. For the reliability of these best practices, the impact of responses from the participants with more than five years of experience was analyzed by using one hundred and thirty three (133) instances of One-Way ANOVA tests. The results of this research can help investigators concentrate on the relevant types of digital evidence when investigating a specific case, consequently saving time and effort.
Bibliographic Details
ERAU Hunt Library - DIGITAL COMMONS JOURNALS
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know