Spatial evolution of magnetic reconnection diffusion region structures with distance from the X-line
2022
- 20Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage20
- Abstract Views20
Artifact Description
We report Magnetospheric Multiscale (MMS) four-spacecraft observations of a thin reconnecting current sheet with weakly asymmetric inflow conditions and a guide field of approximately twice the reconnecting magnetic field. The event was observed at the interface of interlinked magnetic field lines at the flank magnetopause when the maximum spacecraft separation was 370 km and the spacecraft covered ~1.7 ion inertial lengths (di) in the reconnection outflow direction. The ion-scale spacecraft separation made it possible to observe the transition from electron-only super-ion-Alfvénic outflow near the electron diffusion region (EDR) to the emergence of sub-Alfvénic ion outflow in the ion diffusion region (IDR). The EDR to IDR evolution over a distance less than 2 di also shows the transition from a near-linear reconnecting magnetic field reversal to a more bifurcated current sheet, as well as significant decreases in the parallel electric field and dissipation. Both the ion and electron heating in this diffusion region event were similar to previously reported heating in the far downstream exhausts. The dimensionless reconnection rate, obtained four different ways, was in the range of 0.13-0.27. This event reveals the rapid spatial evolution of the plasma and electromagnetic fields through the EDR to IDR transition region.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know