Motor Neurobiology of the Spinal Cord
2001
- 72Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage72
- Abstract Views72
Book Description
Traumatic injuries of the spinal cord continue to be the most common cause of permanent paralysis in young adults in the United States. New information has emerged on the response of spinal neurons to injury of either the spinal cord or peripheral nerves demonstrating that dendrites of injured motoneurons take on characteristics of axons. These and other new developments have helped to promote an exciting new era in the study of spinal cord neurobiology.Motor Neurobiology of the Spinal Cord provides a description of the recent conceptual and technical advances in the field. It provides a description of the new experimental tools available for investigating the neuronal properties that allow populations of spinal cord neurons to control muscles responsible for limb movements and posture. It covers topics ranging from genetics to kinematics and examines cells, tissues, or whole animals in species ranging from fish to humans that are normal, injured, or diseased. By integrating data derived from many new approaches, you'll learn about how spinal cord circuits operate under a variety conditions and about new and exciting inroads being made in motor neurobiology of the spinal cord. Motor Neurobiology of the Spinal Cord elucidates concepts and principles relevant to function and structure throughout the nervous system and presents information about changes induced by injury and disease.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know