Variable Speed Flapping Wing Micro Air Vehicle using a Continuous Variable Transmission Design
2014
- 238Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage238
- Downloads200
- Abstract Views38
Thesis / Dissertation Description
Flapping wing micro air vehicles (FWMAV) have very unique flight mechanics in two-wing orientation. Many challenges arise with two wing configuration: lift production, design construction, and control systems. Control surfaces used in fixed wings can be used but at low Reynolds numbers they become less effective. In order to truly mimic insects with two wings, control mechanisms must be developed. Since MAVs are designed to navigate through confined spaces they need to have many degrees of freedom in motion. One way is to use a continuous variable transmission (CVT) mechanism, by integrating its infinite gear ratios to change the flapping frequency of each wing independently it will be able to generate a roll maneuver. In previous work, two motor designs were used; by using a CVT design an additional motor weight can be neglected. The work completed was the development of a cone CVT design for MAV use that could produce variable frequency in each wing. Testing and analysis of the prototype model shows the design as possible control method in MAVs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know