Configuration and Electronic Properties of the Interface between Lead Iodide Hybrid Perovskite and Self-assembled Monolayers in Solar Cells
2017
- 176Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage176
- Downloads103
- Abstract Views73
Thesis / Dissertation Description
Hybrid perovskite photovoltaic materials are currently the most promising functional materials for solar cell applications with efficiency reaching to those of more conventional materials such as silicon. Using self-assembled monolayers between photovoltaic materials and electrodes is a method for improving the stability and functionality. Recent experiments have shown that using 4-mercaptobenzoic acid and pentafluorobenzenethiol monolayers bridging lead iodide hybrid perovskite photovoltaic materials and electrodes result in improved stability and efficiency. The details of monolayer assembly, molecular adsorption configuration, and resulting modification of electronic properties are important characteristics related to solar cell performance. These characteristics can be obtained through accurate computer stimulations. Here we use ab initio computer stimulations to model adsorption characteristics of this monolayers. First we determine the structure of bulk and reconstructed surfaces of hybrid perovskite. Next we use several initial adsorption configurations to optimize the molecules attachments to reconstructed surfaces and find the most stable geometries. These are than used to determine electronic properties including charge accumulation, Electrostatic potential, and density of states at different interfaces. The effects of different monolayers and different hybrid perovskite surfaces on interfacial electronic properties are compared and discussed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know