Fabrication and characterizations of lithium aluminum titanate phosphate solid electrolytes for Li-based batteries
2018
- 552Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage552
- Downloads509
- Abstract Views43
Thesis / Dissertation Description
Demands for electric vehicles and flexible electronics have escalated research in developing high-performance lithium batteries based on solid-state chemistry. The present work is to develop highly-conductive and flexible solid electrolyte for such applications. Lithium aluminum titanate phosphate (LATP or Li1.3Al0.3Ti1.7(PO4)3), both in ceramic pellets and free-standing composite membranes, have been fabricated. The crystal structure, surface morphology, and ionic conductivity are systematically studied. LATP pellets are prepared using solid state reaction approach. The results indicate that calcine temperature has significant impacts on the phase impurity and sintering temperature and duration have more impacts on the grain size and porosity of LATP pellets. At the optimal conditions, the highest bulk conductivity of LATP electrolyte reaches 1.5*10-3 S/cm at room temperature with an activation energy of 0.206 eV. The as-prepared LATP has high conductivities comparable with liquid electrolytes, which is feasible for applications to all-solid-state lithium batteries. Ceramic electrolyte can be composited with polymer electrolyte to enable flexible battery design. In this study, LATP-based electrolyte membranes are fabricated in composite with a lithiated polymer, i.e. polyvinylidene fluoride (PVDF) dissolved with lithium perchlorate (LiClO4), via the casting method. It is found curing temperature has influences on ionic conductivities of the composite membrane and high casting temperature can cause the decomposition of PVDF. Appropriate LATP composition can increase the ionic conductivity, mechanical strength while maintaining the flexibility of the composite membrane. Raman spectroscopic analysis suggests there exists certain interactions among the three components in the composite membrane.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know