Propagation Models and Analysis for Mobile Phone Data Analytics
Propagation Phenomena in Real World Networks, Page: 335-376
2015
- 35Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage35
- Abstract Views35
Book Chapter Description
People in modern society use mobile phones as their primary way to retrieve information and to connect with others across the globe. The kinds of connections these devices support give rise to networks at many levels, from those among devices connected by near-field radio or bluetooth, to society-wide networks of phone calls made between individuals. This chapter introduces state-of-the-art propagation models that have been applied to understand such networks. It discusses how the models are used in many innovative studies, including how short-lived information spreads between phone callers, how malware spreads within public places, how to detect fraudulent and scamming activity on a phone network, and to predict the propensity of a user to unsubscribe from a mobile phone carrier. It concludes with a discussion of future research opportunities for the study of propagation modeling to mobile phone data analytics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know