REDUCED GRAPHENE OXIDE HYDROGELS, DEPOSITED IN NICKEL FOAM BY ELECTROPHORETIC DEPOSITION, FOR SUPERCAPACITOR
2017
- 30Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage30
- Abstract Views30
Abstract Description
Supercapacitors, a class of electrochemical energy storage devices with superior power densities and long cycling lifetimes, have attracted great attention for the last decade due to their widespread application in backup power supply systems, portable devices, power tools, and hybrid electric vehicles. Graphene is considered as an ideal supercapacitor electrode material due to its large surface area, superior electrical conductivity, good chemical stability, and high mechanical strength. The theoretical specific capacitance of graphene is as high as ~ 550 F/g. The assembly of graphene sheets into three-dimensional interconnected porous microstructures, namely graphene hydrogels, has been considered the most effective approach to utilize these materials in supercapacitors that can achieve high specific capacitances. However, graphene hydrogels typically consist of large amount of water, up to 99 wt. %, resulting in very low graphene packing density. Therefore, the usual volumetric capacitance of graphene hydrogels is very poor, limiting their practical application.Please click Additional Files below to see the full abstract.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know