Changes in amorphous silica mechanical properties induced by femtosecond laser irradiation
2017
- 36Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage36
- Abstract Views36
Abstract Description
Femtosecond laser irradiation is an efficient process to modify refraction index of silicate glasses in order to create waveguide in glass fibers. Depending pulse energy and pulse duration, different kind of modifications can happen such as densification to nanoporosity nucleation [1], which affects optical properties in different ways. However such modifications should also affect mechanical properties and could be prejudicial to glass durability.The aim of this paper is to investigate effects of femtosecond laser irradiation on mechanical properties of silica glass using nanoindentation and micropillar compression [2]. For that purpose linear waveguides are produced using different process parameters. Samples are cut perpendicular to these waveguides. Nanoindentations are performed on the resulting cross-sections. Pillars are fabricated using a FIB and are then compressed using a specific nanomechanical tester.Main results are presented on Fig 1. It is shown that the highest irradiation energy lead to decrease in mechanical properties. This effect is more pronounced with micropillar compression than with nanoindentation. This can be explained by the highest hydrostatic pressure in indentation experiments, which can limit damage of silica.Please click Additional Files below to see the full abstract.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know