Computational tool to accelerate CMAS-resistant TBC design for aero-turbine applications
2018
- 223Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage223
- Abstract Views223
Abstract Description
Infiltration of molten Calcium-Magnesium Alumino-Silicate (CMAS) deposits is a primary cause of failure of thermal barrier coatings (TBCs) on aero-turbine engine blades. Cooling of infiltrated CMAS deposits leads to densification and subsequent cracking and delamination driven by internal strain energy due to the thermal mismatch between the solidified CMAS melt and the porous columnar TBC architecture. Infiltration kinetics, and thus onset of mechanical failure, are strongly affected by the thermodynamic properties of the CMAS melt (viscosity, melting point, etc.) and the crystalline reaction products formed due to the interaction between the CMAS melt and TBC material, which can block the channels in the TBC structure and inhibit further melt infiltration. Additional complexity is added due to the wide range of CMAS deposit compositions found in nature, which can lead to vastly disparate melt behavior and CMAS-TBC reactivity dependent on both deposit and coating composition.A robust model to predict TBC failure and enable the design of novel CMAS-resistant TBC materials therefore relies on the ability to model CMAS melt properties and the reactivity between melt and coating. A computational design tool is currently under development to enable Integrated Computational Materials Engineering (ICME)-informed modeling of CMAS-TBC interaction and coating performance. This computational tool leverages Calculation of PHase Diagram (CALPHAD)-based thermodynamic databases which include the components of CMAS-Fe deposits as well as RE zirconate (RE=Y,Gd) TBC materials. A tool framework compatible with the Thermo-Calc software will allow for wide availability of the design tool across academic and industrial R&D communities. The tool enables TBC design by streamlining thermodynamic calculations related to CMAS melt properties and CMAS/TBC reactivity, feeding results into property and performance models. A CMAS selection module contains a compiled list of CMAS compositions while also allowing for user-defined compositions, allowing for quick assessment of CMAS melt properties across relevant deposit compositions and ranges. Efficient comparison of CMAS/TBC interactions can be performed across a large number of pre-defined or user-defined CMAS chemistries. CMAS reactivity may also be assessed across a range of RE/Zr ratios as well as compared between various RE systems. Examples of tool functionalities and relevant thermodynamic calculations will be presented. Future work includes integration with thermomechanical and kinetic infiltration models to predict TBC performance.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know