Analyzing landslide hotspots and susceptibility in East Tennessee transportation corridors
2023
- 285Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage285
- Abstract Views226
- Downloads59
Poster Description
Landslides in the Southern Appalachian Mountains of East Tennessee often activate and reactivate. Often triggered by high-intensity or prolonged rainfall, landslides are responsible for infrastructure damage, closure of transportation routes, and even fatality. The study area is defined by the New River Watershed which has high elevation and steep slopes cutting through State Route 116. The route has hairpin turns and has experienced damage from past landslide events. The geology here is mostly shale and sandstones with coal bedding throughout. Much of the soil consists of a fine-loamy texture. Most drainage occurs from the New River, fed by runoff from slopes into roadways. This area experiences heavy rainfall with a yearly average of 70 inches. Landcover consists of a mostly forested landscape with shrubs and grassland. In response to previous landslides, the Tennessee Department of Transportation (TDOT) recently repaired six areas within the route intercepted by recent landslides. Aside from the landslides near TDOT’s corridors, approximately 50 additional landslides have been found using Google Earth and LiDAR data. Landslide hotspots were identified using kernel density estimation and the nearest neighbor index. A heuristic landslide susceptibility model was prepared by weighing the ArcGIS layers: slope, soil particle, geology, curvature, elevation, distance from the stream, and land cover, in their contribution to the previous landslides. Results indicate that additional sites in Anderson and Morgan County should be studied further for potential landslide-related damage. The study will improve the proactive decisions of TDOT and justify timely monitoring, maintenance, and strategic protection of the route from slope hazards.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know