Ensuring Resilience Against Stealthy Attacks on Cyber-Physical Systems
IEEE Transactions on Automatic Control, ISSN: 1558-2523, Vol: 69, Issue: 12, Page: 8234-8246
2024
- 21Usage
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage21
- Downloads13
- Abstract Views8
- Captures9
- Readers9
Article Description
This article provides a tool for analyzing mechanisms that aim to achieve resilience against stealthy, or undetectable, attacks on cyber-physical systems. We consider attackers who are able to corrupt all of the inputs and outputs of the system. To counter such attackers, a response scheme must be implemented that keeps the attacker from corrupting the inputs and outputs of the system for certain periods of time. To aid in the design of such a response scheme, our tool provides sufficient lengths for these periods of time in order to ensure safety with a particular probability. We provide an upper bound on how long the system can remain under stealthy attack before the safety constraints are violated. Furthermore, we show how a detector limits the set of biases an attacker can exert on the system while still remaining stealthy, aiding a system operator in the design of the detector. Our contributions are demonstrated with an illustrative example.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85193249204&origin=inward; http://dx.doi.org/10.1109/tac.2024.3401013; https://ieeexplore.ieee.org/document/10530390/; https://digitalcollections.dordt.edu/faculty_work/1518; https://digitalcollections.dordt.edu/cgi/viewcontent.cgi?article=2526&context=faculty_work
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know