A Conceptual Model of Adaptive Knowledge-Based Systems
1992
- 10Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage10
- Abstract Views10
Article Description
The ability to learn or adapt is widely recognized as one of the most prominent abilities of any animate or inanimate intelligent system. While considerable progress has been made in the science and technology of machine learning, little of that has been incorporated in traditional knowledge-based systems such as diagnostic or expert systems operating in a managerial environment. In this paper a conceptual model of an adaptive expert system is proposed as an attempt to lay a foundation for building knowledge-based systems that can learn by interacting with the environment. In contrast to existing models for learning (such as for knowledge acquisition and skill refinement) where the issue of noise and uncertainty is usually neglected. our model incorporates a stochastic environment and a learning response behavior which too is stochastic in nature
Bibliographic Details
INFORMS: Institute for Operations Research
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know