Spatial Interactions between Humans and Assistive Agents
Help Me Help You: Bridging the Gaps in Human-Agent Collaboration, Page: 42-47
2011
- 337Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage337
- Downloads293
- Abstract Views44
Article Description
While computers assist humans with tasks such as navigation that involve spatial aspects, agents that can interact in a meaningful way in this context are still in their infancy. One core issue is the mismatch in the representation of spatial information a computer-based system is likely to use, and the one a human is likely to use. Computers are better suited for quantitative schemes such as maps or diagrams that rely on measurable distances between entities. Humans frequently use higher-level, domain-specific conceptual representations such as buildings, rooms, or streets for orientation purposes. Combined with the person-centric world view that we often assume when we refer to spatial information, it is challenging for agents to convert statements using spatial references into assertions that match their own internal representation. In this paper, we discuss an approach that uses natural language processing and information extraction tool kits to identify entities and statements about their spatial relations. These extractions are then processed by a spatial reasoner to convert them from the human conceptual space into the quantitative space used by the computer-based agent.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know