Indoor Scene Understanding
2013
- 217Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage217
- Abstract Views194
- Downloads23
Artifact Description
In computer vision, holistic indoor scene understanding from images is a complex and important task that requires solving several subtasks simultaneously. Advanced indoor scene understanding systems can be used to build personal robots that can clean rooms and to build automated surveillance systems to improve public safety.In this research, we consider the problem of indoor scene understanding from both RGB and depth images. We are interested in distinguishing the major planes from objects that appear in a scene and our goal is to classify each pixel from an indoor image as one of the following categories: walls, the ceiling, the oor or objects.We present how to construct descriptors from RGB and depth images and demonstrate that images with depth can be used to improve the performance of our system. Our recognition system is based on support vector machines and a Markov random eld. In addition, we explore how to utilize global consistency to improve the performance of our system. In particular, we propose two ltering algorithms that can improve the performance over state-of-the-art computer vision systems.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know