Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs
Journal of Medical Systems
2018
- 5Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage5
- Abstract Views5
Article Description
To detect pulmonary abnormalities such as Tuberculosis (TB), an automatic analysis and classification of chest radiographs can be used as a reliable alternative to more sophisticated and technologically demanding methods (e.g. culture or sputum smear analysis). In target areas like Kenya TB is highly prevalent and often co-occurring with HIV combined with low resources and limited medical assistance. In these regions an automatic screening system can provide a cost-effective solution for a large rural population. Our completely automatic TB screening system is processing the incoming CXRs (chest X-ray) by applying image preprocessing techniques to enhance the image quality followed by an adaptive segmentation based on model selection. The delineated lung regions are described by a multitude of image features. These characteristics are than optimized by a feature selection strategy to provide the best description for the classifier, which will later decide if the analyzed image is normal or abnormal. Our goal is to find the optimal feature set from a larger pool of generic image features, –used originally for problems such as object detection, image retrieval, etc. For performance evaluation measures such as under the curve (AUC) and accuracy (ACC) were considered. Using a neural network classifier on two publicly available data collections, –namely the Montgomery and the Shenzhen dataset, we achieved the maximum area under the curve and accuracy of 0.99 and 97.03%, respectively. Further, we compared our results with existing state-of-the-art systems and to radiologists’ decision.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know