Parameterized approximation algorithms for some location problems in graphs
Theoretical Computer Science
2019
- 7Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage7
- Abstract Views7
Article Description
We develop efficient parameterized, with additive error, approximation algorithms for the (Connected) r-Domination problem and the (Connected) p-Center problem for unweighted and undirected graphs. Given a graphG, we show how to construct a (connected) (r+O(μ))-dominating set D with |D| ≤|D∗|efficiently. Here, D∗ is a minimum (connected) r-dominating set of G and μ is our graph parameter, which is the tree-breadth or the cluster diameter in a layering partition of G. Additionally, we show that a +O(μ)-approximation for the (Connected) p-Center problem on G can be computed in polynomial time. Our interest in these parameters stems from the fact that in many real-world networks, including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others, and in many structured classes of graphs these parameters are small constants.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know