Cross-input Amortization Captures the Diffuse Adversary
1996
- 27Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage27
- Downloads27
Report Description
Koutsoupias and Papadimitriou recently raised the question of how well deterministic on-line paging algorithms can do against a certain class of adversarially biased random inputs. Such an input is given in an on-line fashion; the adversary determines the next request probabilistically, subject to the constraint that no page may be requested with probability more than a fixed $\epsilon>0$. In this paper, we answer their question by estimating, within a factor of two, the optimal competitive ratio of any deterministic on-line strategy against this adversary. We further analyze randomized on-line strategies, obtaining upper and lower bounds within a factor of two. These estimates reveal the qualitative changes as $\epsilon$ ranges continuously from 1 (the standard model) towards 0 (a severely handicapped adversary). The key to our upper bounds is a novel charging scheme that is appropriate for adversarially biased random inputs. The scheme adjusts the costs of each input so that the expected cost of a random input is unchanged, but working with adjusted costs, we can obtain worst-case bounds on a per-input basis. This lets us use worst-case analysis techniques while still thinking of some of the costs as expected costs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know