Privacy Analysis of User Association Logs in a Large-scale Wireless LAN
2011
- 27Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage27
- Downloads24
- Abstract Views3
Report Description
User association logs collected from a large-scale wireless LAN record where and when a user has used the network. Such information plays an important role in wireless network research. One concern of sharing these data with other researchers, however, is that the logs pose potential privacy risks for the network users. Today, the common practice in sanitizing these data before releasing them to the public is to anonymize users' sensitive information, such as their devices' MAC addresses and their exact association locations. In this work, we demonstrate that such sanitization measures are insufficient to protect user privacy because the differences between user association behaviors can be modeled and many are distinguishable. By simulating an adversary's role, we propose a novel type of correlation attack in which the adversary uses the anonymized association log to build signatures against each user, and when combined with auxiliary information, such signatures can help to identify users within the anonymized log. On a user association log that contains more than four thousand users and millions of association records, we demonstrate that this attack technique is able to pinpoint the victim's identity exactly with a probability as high as 70%, and narrow it down to a set of 20 candidates with a probability close to 100%. We further evaluate the effectiveness of standard anonymization techniques, including generalization and perturbation, in mitigating this correlation attack; our experimental results reveal only limited success of these methods, suggesting that more thorough treatment is needed when anonymizing wireless user association logs before public release.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know