An Assessment of Single-Channel EMG Sensing for Gestural Input
2014
- 164Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage164
- Downloads112
- Abstract Views52
Report Description
Wearable devices of all kinds are becoming increasingly popular. One problem that plagues wearable devices, however, is how to interact with them. In this paper we construct a prototype electromyography (EMG) sensing device that captures a single channel of EMG sensor data corresponding to user gestures. We also implement a machine learning pipeline to recognize gestural input received via our prototype sensing device. Our goal is to assess the feasibility of using a BITalino EMG sensor to recognize gestural input on a mobile health (mHealth) wearable device known as Amulet. We conduct three experiments in which we use the EMG sensor to collect gestural input data from (1) the wrist, (2) the forearm, and (3) the bicep. Our results show that a single channel EMG sensor located near the wrist may be a viable approach to reliably recognizing simple gestures without mistaking them for common daily activities such as drinking from a cup, walking, or talking while moving your arms.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know