PlumX Metrics
Embed PlumX Metrics

Shared Roots: Regularizing Deep Neural Networks through Multitask Learning

2014
  • 0
    Citations
  • 183
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Thesis / Dissertation Description

In this paper, we propose to regularize deep neural nets with a new type of multitask learning where the auxiliary task is formed by agglomerating classes into super-classes. As such, it is possible to jointly train the network on the class-based classification problem AND super-class based classification problem. We study this in settings where the training set is small and show that , concurrently with a regularization scheme of randomly reinitializing weights in deeper layers, this leads to competitive results on the ImageNet and Caltech-256 datasets and state-of-the-art results on CIFAR-100.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know