Online Estimation of Thermal Parameters Based on a Reduced Wide-temperature-range Electro-thermal Coupled Model for Lithium-ion Batteries
2018
- 4Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage4
- Abstract Views4
Article Description
To improve the accuracy of thermal model, optimize the design of heat dissipation system and evaluate online the thermal management system, an online estimation method of key thermal parameters is developed from carefully designed experiments, rather than being taken from the literature or the empirical value. The accurate prediction of heat generation, which is based on a reduced wide-temperature-range electro-thermal coupled model, is presented under easily obtainable alternating current excitation at different temperatures. To circumvent some inherent errors, a combined experimental/computational approach to simultaneously estimate the specific heat capacity and thermal resistance is proposed using quasi step power, with which the identification time is significantly reduced. The identified values of specific heat capacity and thermal resistance are validated with high accuracy. The adaptability validation is carried out under different temperatures and cooling conditions, as well as using different battery chemistries, indicating that the proposed method is generic. The in-situ methodology, thanks to good robustness on the colored noise, is capable of providing a promising candidate for accurate thermal modeling, on-board evaluation of battery thermal safety, and advanced design of thermal management system for electric vehicles.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know