PlumX Metrics
Embed PlumX Metrics

GMSRF-Net: An Improved generalizability with Global Multi-Scale Residual Fusion Network for Polyp Segmentation

Proceedings - International Conference on Pattern Recognition, ISSN: 1051-4651, Vol: 2022-August, Page: 4321-4327
2022
  • 17
    Citations
  • 1
    Usage
  • 12
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    17
    • Citation Indexes
      16
    • Policy Citations
      1
      • Policy Citation
        1
  • Usage
    1
  • Captures
    12

Conference Paper Description

Colonoscopy is a gold standard procedure but is highly operator-dependent. Efforts have been made to automate the detection and segmentation of polyps, a precancerous precursor, to effectively minimize missed rate. Widely used computer-aided polyp segmentation systems actuated by encoder-decoder have achieved high performance in terms of accuracy. However, polyp segmentation datasets collected from varied centers can follow different imaging protocols leading to difference in data distribution. As a result, most methods suffer from performance drop when trained and tested on different distributions and therefore, require re-training for each specific dataset. We address this generalizability issue by proposing a global multi-scale residual fusion network (GMSRF-Net). Our proposed network maintains high-resolution representations by performing multi-scale fusion operations across all resolution scales through dense connections while preserving low-level information. To further leverage scale information, we design cross multi-scale attention (CMSA) module that uses multi-scale features to identify, keep, and propagate informative features. Additionally, we introduce multi-scale feature selection (MSFS) modules to perform channel-wise attention that gates irrelevant features gathered through global multi-scale fusion within the GMSRF-Net. The repeated fusion operations gated by CMSA and MSFS demonstrate improved generalizability of our network.Experiments conducted on two different polyp segmentation datasets show that our proposed GMSRF-Net outperforms the previous top-performing state-of-the-art method by 8.34% and 10.31% on unseen CVC-ClinicDB and on unseen Kvasir-SEG, in terms of dice coefficient. Additionally, when tested on unseen CVC-ColonDB, we surpass the state-of-the-art method by 9.38% and 4.04% in terms of dice coefficient, when source dataset is Kvasir-SEG and CVC-ClinicDB, respectively.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know