Lightweight Spectral-Spatial Squeeze-and- Excitation Residual Bag-of-Features Learning for Hyperspectral Classification
IEEE Transactions on Geoscience and Remote Sensing, ISSN: 1558-0644, Vol: 58, Issue: 8, Page: 5277-5290
2020
- 75Citations
- 4Usage
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations75
- Citation Indexes75
- 75
- CrossRef35
- Usage4
- Abstract Views4
- Captures31
- Readers31
- 31
Article Description
Of late, convolutional neural networks (CNNs) find great attention in hyperspectral image (HSI) classification since deep CNNs exhibit commendable performance for computer vision-related areas. CNNs have already proved to be very effective feature extractors, especially for the classification of large data sets composed of 2-D images. However, due to the existence of noisy or correlated spectral bands in the spectral domain and nonuniform pixels in the spatial neighborhood, HSI classification results are often degraded and unacceptable. However, the elementary CNN models often find intrinsic representation of pattern directly when employed to explore the HSI in the spectral-spatial domain. In this article, we design an end-to-end spectral-spatial squeeze-and-excitation (SE) residual bag-of-feature (S3EResBoF) learning framework for HSI classification that takes as input raw 3-D image cubes without engineering and builds a codebook representation of transform feature by motivating the feature maps facilitating classification by suppressing useless feature maps based on patterns present in the feature maps. To boost the classification performance and learn the joint spatial-spectral features, every residual block is connected to every other 3-D convolutional layer through an identity mapping followed by an SE block, thereby facilitating the rich gradients through backpropagation. Additionally, we introduce batch normalization on every convolutional layer (ConvBN) to regularize the convergence of the network and scale invariant BoF quantization for the measure of classification. The experiments conducted using three well-known HSI data sets and compared with the state-of-the-art classification methods reveal that S3EResBoF provides competitive performance in terms of both classification and computation time.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85086138500&origin=inward; http://dx.doi.org/10.1109/tgrs.2019.2961681; https://ieeexplore.ieee.org/document/8976424/; https://digitalcommons.isical.ac.in/journal-articles/188; https://digitalcommons.isical.ac.in/cgi/viewcontent.cgi?article=1942&context=journal-articles
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know