Existence, construction and extension of continuous solutions of an iterative equation with multiplication
Science China Mathematics, ISSN: 1674-7283, Vol: 66, Issue: 10, Page: 2261-2276
2023
- 3Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage3
- Abstract Views3
Article Description
The iterative equation is an equality with an unknown function and its iterates, most of which found from references are a linear combination of those iterates. In this paper, we work on an iterative equation with multiplication of iterates of the unknown function. First, we use an exponential conjugation to reduce the equation on ℝ+ to the form of the linear combination on ℝ, but those known results on the linear combination were obtained on a compact interval or a neighborhood near a fixed point. We use the Banach contraction principle to give the existence, uniqueness and continuous dependence of continuous solutions on ℝ+ that are Lipschitzian on their ranges, and construct its continuous solutions on ℝ+ sewing piece by piece. We technically extend our results on ℝ+ to ℝ− and show that none of the pairs of solutions obtained on ℝ+ and ℝ− can be combined at the origin to get a continuous solution of the equation on the whole ℝ, but can extend those given on ℝ+ to obtain continuous solutions on the whole ℝ.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know