Text Anomaly Detection with ARAE-AnoGAN
2020
- 3,288Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage3,288
- Downloads2,930
- 2,930
- Abstract Views358
Article Description
Generative adversarial networks (GANs) are now one of the key techniques for detecting anomalies in images, yielding remarkable results. Applying similar methods to discrete structures, such as text sequences, is still largely an unknown. In this work, we introduce a new GAN-based text anomaly detection method, called ARAE-AnoGAN, that trains an adversarially regularized autoencoder (ARAE) to reconstruct normal sentences and detects anomalies via a combined anomaly score based on the building blocks of ARAE. Finally, we present experimental results demonstrating the effectiveness of ARAE-AnoGAN and other deep learning methods in text anomaly detection.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know