Machine Learning-Enabled Dyslexia Detection from Dytective Gaming Participants Datasets
2022
- 128Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage128
- Abstract Views128
Poster Description
For our project, we specifically focused on Dyslexia, and how we can organize data of Dyslexic patients and non-Dyslexic patients based on data from previous research papers. We developed a Logistic Regression model, which is a model that processes the data points and their sets as numerical values, and the model will use one of the sets as a dependent variable to compare the rest of the data sets to find a correlation between them. This model organized the data from a study that tested the use of games to help diagnose patients with Dyslexia, and the model was tested on how well it was able to identify Dyslexia from the current data provided from the paper due to the paper labeling each point as Dyslexia or not. The model used 80% of the data from the paper as training to understand the correlation between the independent variables to the dependent variable, while 20% of the data was used to test the accuracy of the model. The model was able to output an accuracy of 78.88% of the data from the testing set, and the missing percent could be attributed to certain points with the data due to some of the patients of the study being marked as possibly having Dyslexia. Thus, the use of Machine Learning techniques has provided great results for diagnosing disorders based on the data that is provided to the models which helps reduce the risk of misdiagnosis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know