A HIGH STRAIN-RATE CONSTITUTIVE MODEL FOR SAND WITH APPLICATION IN FINITE ELEMENT ANALYSIS Internal Geotechnical Report 2011-4
2011
- 2,979Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2,979
- Downloads2,752
- 2,752
- Abstract Views227
Report Description
The report presents a constitutive model for simulating the high strain-rate behavior of sands. Based on the concepts of critical-state soil mechanics, the bounding surface plasticity theory and the overstress theory of viscoplasticity, the constitutive model simulates the high strain-rate behavior of sands under uniaxial, triaxial and multiaxial loading conditions. The model parameters are determined for Ottawa and Fontainebleau sands, and the performance of the model under extreme transient loading conditions is demonstrated through simulations of split Hopkinson pressure bar tests up to a strain rate of 2000/sec. The constitutive model is implemented in a finite element analysis software to analyze underground tunnels in sand subjected to internal blast loads. Parametric studies are conducted to examine the effect of relative density and type of sand and of the depth of tunnel on the variation of stresses and deformations in the soil adjacent to the tunnels.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know