Underwater Acoustic OFDM: Algorithm Design, DSP Implementation, and Field Performance
2014
- 2,084Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2,084
- Downloads1,860
- 1,860
- Abstract Views224
Artifact Description
Multicarrier modulation in the form of orthogonal frequency division multiplexing (OFDM) has now been recognized as an appealing solution for high data rate communications over underwater acoustic channels with large delay spread. This dissertation covers three research topics: (i) transceiver algorithm design, (ii) real- time transceiver implementation and optimization on DSP platforms, and (iii) analysis of environmental impact on communication performance, unified under a common objective of bringing the underwater acoustic OFDM technology into practical systems.On algorithm design for underwater acoustic OFDM, this thesis first investigates a key receiver module of Doppler scale estimation. We compare various Doppler scale estimators exploiting different OFDM signal structures. Second, this thesis investigates adaptive modulation and coding (AMC) for underwater acoustic OFDM, where the transmitter parameters adapt to time-varying channel conditions.For DSP-based implementation, we first optimize the receiver algorithms to achieve real-time receiver processing. In this thesis, we consider two setups: a single transmitter and a single receiver, and two transmitters and two receivers. And we pursue both floating- and fixed-point implementations. Second, we implement an OFDM- modulated dynamic coded cooperation (DCC) in a three-node network with a source, a destination, and a relay.Finally, this thesis analyzes the performance of underwater OFDM modems in a recent two-month deployment in the Chesapeake Bay. We correlate the receiver performance with environmental parameters, and also explore advanced offline receiver algorithms to process data sets that failed decoding during online operations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know