Structural, floristic, and phylogenetic dynamics of tropical forest stands during succession
Page: 1-159
2008
- 168Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage168
- Abstract Views168
Thesis / Dissertation Description
Secondary succession in tropical forests has been studied extensively, but gaps remain in our knowledge. In my doctoral work, I collected the largest chronosequence dataset of tropical forest vegetation yet assembled that includes both secondary and old-growth sites sampled with standard methodology. I surveyed trees, shrubs, lianas (woody vines), and giant herbs (Zingiberales) at 30 sites in northeastern Costa Rica, identifying species with high accuracy. I address three understudied dimensions of tropical forest succession: (1) How rapidly do secondary forests converge with old-growth forest, in terms of aboveground biomass, species richness, and species composition? (2) Do lianas behave differently from trees during the process of succession? (3) How does the community phylogenetic structure of secondary forests change over time?^ Secondary forests recover rapidly in this region, with lianas and free-standing woody plants responding differently during succession. Total aboveground biomass reaches old-growth levels in as little as 15-20 yrs, species richness recovers in 30-44 yrs, and species composition in secondary forests converges with old-growth forest over time. Tree biomass shows a hump-shaped relationship with forest age, with the highest values in forests 30-44 yrs of age, while liana biomass shows a monotonic increase during succession. Depending on the method of assessment, liana species richness shows no change or a slight decline with forest age. The increase in species richness during succession is driven by tree species. Liana species composition does show concerted changes during succession, though, and the changes in the liana species composition are strongly related to changes in the tree community. I discuss the advantages and constraints of the liana growth form, and how growth form leads to the differences between tree and liana responses to successional change.^ The phylogenetic structure of forest communities shows strong overdispersion at multiple scales and at multiple stem size classes: individuals inhabiting a site are less closely related than would be expected by chance. This pattern becomes more pronounced in later succession and mature forests. If phylogenetic overdispersion is interpreted as a product of biotic filtering, the observed pattern of relatedness corroborates existing models of forest succession. ^
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know