The Development and Validation of a Biomechanical Model to Describe Golf Swings: A Focus on Rotational Mechanics and Performance
2018
- 1,470Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,470
- Downloads1,258
- 1,258
- Abstract Views212
Artifact Description
This work presents the creation, validation, and utility of a new full body biomechanical model to describe the golf swing. The model used 47 retroreflective markers to capture swing data with a 12-camera Vicon MX motion capture system. Motion data was collected at 250Hz, the data was processed, and a 17 segment custom biomechanical model was constructed in Visual3D (c-motion, Derwood, MD). Data from 10 subjects was collected. The swing was divided by 4 event times—Address, Peak Backswing, Impact, and Follow Through—at which the kinematics of the swing were analyzed. Validation results indicated excellent agreement between expected joint angles and joint angles calculated by the Visual3D model (R = 0.999). Kinematic results indicated that X-Factor at Peak Backswing = -43 ± 5°, Lead Shoulder Adduction at Peak Backswing = 76 ± 14°, and Lead Knee Flexion at Impact = 10 ± 9°. Additionally, Trunk Rotation at Address was found to be positively associated with ball carry and clubhead progression at Impact (p = 0.0497 and p = 0.0209, respectively), X-Factor at Peak Backswing and Impact were found to be positively associated with clubhead speed at Impact (p = 0.0028 and p = 0.0013, respectively), and Lead Shoulder Adduction at Peak Backswing and Impact were found to be positively associated with clubhead speed at Impact (p = 0.0093 and p = 0.0459, respectively). The groundwork has been laid for future studies concerning the golf swing. Performance enhancement and injury prevention remain long-term goals.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know