Fabrication, Optimization and Characterization of Synthetic Polymer Based Micro-Nano-Structured Composite Scaffolds for Bone Regeneration
2015
- 474Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage474
- Downloads356
- Abstract Views118
Artifact Description
Various scaffold properties have been explored to understand the influence of physical and chemical properties on cellular behavior. Surface morphology is one property, which can be varied by modifying fiber diameter, and has been shown to play a role in cellular attachment, proliferation, and differentiation. The effect of fiber diameter on cellular proliferation and differentiation has offered varying results: some favor nanofibers and others favor microfibers in terms of their ability to encourage proliferation and cellular differentiation. In this study, the surface morphology was altered by modifying the fiber diameter of electrospun polycaprolactone (PCL). This study suggests that though higher attachment and proliferation rates are evident in scaffolds with lower average fiber diameters. However, when looking at cellular differentiation and mineralization, there appears to be a split in ideal fiber diameter ranges (400-800nm and 1.2-1.7µm). This leads to the recommendation that in future studies, a biomodal distribution of micro and nano ranged scaffolds be considered.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know