Synthesis, Characterization, and Photocatalytic Testing of Titania-Based Aerogels for the Degradation of Volatile Organic Compounds
2012
- 1,817Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,817
- Downloads1,616
- 1,616
- Abstract Views201
Article Description
The need to degrade volatile organic compounds (VOC’s) has grown with recent economic and environmental concerns. Advanced oxidation processes governing breakdown of VOC’s have received significant attention due to environmentally conscious practices and objectives. Photocatalysis is a logical approach for VOC removal in air because of minimal energy requirements and ease of implementation. Titania with high pore volume and surface area are synthesized using a modified sol-gel method in conjunction with carbon dioxide supercritical drying. Vanadium doping increases the visible absorption of titania aerogels. Solvent removal is achieved using a custom-built high pressure chamber designed for carbon dioxide supercritical drying. This method preserves pore structure of the sol-gels and results in low density monoliths. Characterization of the materials suggests photoactivity based on high surface area, nanoscale morphology, absorption spectra, and crystallinity. The aerogels were characterized by X-ray powder diffraction (XRD), UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDXS), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and Brunauer-Emmet-Teller (BET) physisorption surface analysis. Materials were tested for activity in degrading propionaldehyde, a model VOC, under ultraviolet light using a flow-through type quartz plate reactor and gas chromatograph. Titania and vanadium-doped titania aerogels exhibited propionaldehyde degradation at a rate of 1.04 µ-molcm-2h-1 confirming the materials as active gas-phase photocatalysts.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know