The Effects of MAPK Signaling on the Development of Cerebellar Granule Cells
2021
- 164Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage164
- Downloads101
- Abstract Views63
Article Description
The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the mechanisms that regulate the proliferation of cerebellar granule cells and the diversification of the Atoh1 lineage. The research presented in Chapter I elucidates a previously underappreciated role of FGF/MAPK pathway signaling in granule cell (GC) development and cerebellar morphogenesis. Here, we consider the involvement of MAPK signaling in the development of the Atoh1 lineage of granule cell precursors (GCP) in the cerebellum. Using mice with upregulation of the MAPK intermediate, MEK1, and mice with downregulation of the proliferative readout Etv4 gene, the regulatory effects of MAPK signaling were observed and interpreted through phenotype analysis. The results showed distinct morphological differences between the mutants and the wildtypes, including irregularities in foliation patterning of the central lobe, changes in lobule sizes, and discontinuities in the developing external granular layer (EGL) and internal granular layer (IGL). The measured cerebellar foliation index was indeed increased in MEK gain-of-function (MEK-GOF) mutants, but oddly enough the internal granular layer (IGL) area at maturity was decreased compared to the WT. Further investigation of the MEK-GOF mutants revealed ectopic expression of a neural progenitor gene called Sox2 in the EGL of late stage postnatal mice and ectopic expression of the MAPK gene Tlx3, indicating that GCP continue to proliferate longer than expected due to induction of MAPK activity in non-endogenous tissues. Furthermore, analyses showed that sustained GCP presence in the EGL did not seem to affect total GC number, but may contribute to the foliation and expansion phenotypes in seen in MEK-GOF and may also provide insight for division mechanisms in overexpression of MAPK signaling. In addition to examining the signaling and effects of GCP populations during development, the origin of Atoh1 neural precursor lineages was investigated in lineage tracing experiments presented in Chapter II. While the rhombic lip has historically been identified as the sole progenitor region for Atoh1 glutamatergic stem cell lineages, we propose an early developmental origin for subpopulations of glutamatergic Atoh1 cells in the ventricular zone (VZ). Early embryonic analyses of Atoh1 and Cre expression at E10.5 revealed clonal expansion of a novel Atoh1 lineage demonstrating oscillating expression from the VZ prior to commitment as deep cerebellar nuclei (DCN).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know