Spatial and temporal aspects of synaptic plasticity
Page: 1-131
2009
- 104Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage104
- Abstract Views104
Thesis / Dissertation Description
The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted even if definitive proof of the synaptic plasticity and memory hypothesis is still lacking. When learning occurs, patterns of neural activity representing the occurrence of events cause changes in the strength of synaptic connections within the brain. Reactivation of these altered connections constitutes the experience of memory for these events and for other events with which they may be associated. These statements summarize a long-standing theory of memory formation that we refer to as the synaptic plasticity and memory hypothesis. Since activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation, and is both necessary and sufficient for the information storage, we can speculate that a methodological study of the synapse will help us understand the mechanism of learning. Random events underlie a wide range of biological processes as diverse as genetic drift and molecular diffusion, regulation of gene expression and neural network function. Additionally spatial variability may be important especially in systems with nonlinear behavior. Since synapse is a complex biological system we expect that stochasticity as well as spatial gradients of different enzymes may be significant for induction of plasticity. In that study we address the question "how important spatial and temporal aspects of synaptic plasticity may be". We developed methods to justify our basic assumptions and examined the main sources of variability of calcium dynamics. Among them, a physiological method to estimate the number of postsynaptic receptors as well as a hybrid algorithm for simulating postsynaptic calcium dynamics. Additionally we studied how synaptic geometry may enhance any possible spatial gradient of calcium dynamics and how that spatial variability affect plasticity curves. Finally, we explored the potential of structural synaptic plasticity to provide a metaplasticity mechanism specific for the synapse.
Bibliographic Details
https://digitalcommons.library.tmc.edu/dissertations/AAI3383832; http://digitalcommons.library.tmc.edu/dissertations/AAI3383832
https://digitalcommons.library.tmc.edu/dissertations/AAI3383832; https://digitalcommons.library.tmc.edu/cgi/viewcontent.cgi?article=3139&context=dissertations; http://digitalcommons.library.tmc.edu/dissertations/AAI3383832; http://digitalcommons.library.tmc.edu/cgi/viewcontent.cgi?article=3139&context=dissertations
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know