Characterization Of The Role Of The Pkm101-Encoded T4Ss Outer Membrane Core Complex In Substrate Transfer, Pilus Biogenesis, And Recipient Cell Contact
2017
- 501Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage501
- Downloads386
- Abstract Views115
Thesis / Dissertation Description
The bacterial type IV secretion systems (T4SS) encoded on the Escherichia coli pKM101 and R388 conjugative plasmids and the Agrobacterium tumefaciens virB operon are composed of 12 subunits arranged in an architecturally similar fashion. Structural studies of the T4SS from R388 (TrwR388) highlighted the presence of a distinct outer membrane core complex (OMCC) and inner membrane complex (IMC) joined together by a central stalk. This thesis is focused on the development of the pKM101 model system and the role of an OMCC cap region formed by alpha helical antenna projections (AP) found in VirB10 and TraFpKM101. I introduced various internal deletions, truncations, and substitutions between TraFpKM101 and VirB10 to study the role of the AP cap in (i) substrate transfer to recipient plant or bacterial cells, (ii) pilus biogenesis and donor-specific bacteriophage sensitivity, and (iii) recipient cell contact. My results demonstrate that the C-terminal tails of VirB10 and TraFpKM101 are essential for DNA transfer and pilus biogenesis, whereas the AP domains are only important for pilus biogenesis. Neither of these domains is critical for recipient cell contact as monitored by sensitivity to Pseudomonas aeruginosa containing a functional type VI secretion system. Finally, I demonstrated that the IMC of pKM101 is able to functionally pair with the OMCCs from either VirB/VirD4, TrwR388, or the Ptl T4SS of Bordetella pertussis restoring recipient cell contact and plasmid transfer. These results highlight the common ancestry between these functionally distinct machines and support a model where functionally independent IMCs and OMCCs have co-evolved to form the T4SS in Gram-negative bacteria.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know