Fatigue Life of Pultruded and Hand Lay-Up GFRP Exposed to Different Environmental Conditions.
2002
- 1,253Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,253
- Downloads1,159
- 1,159
- Abstract Views94
Thesis / Dissertation Description
The use of unidirectional Glass Fiber Reinforced Polymer (GFRP) composites to reinforce glulam beams in tension has been proven by researchers at University of Maine and others to improve both allowable strength and ductility. The addition of 3% E-glass FRP has been shown to increase the allowable flexural strength by as much as 100%. These promising findings can be used in practice only if the GFRP will maintain a major proportion of its strengthfstiffness mechanical properties over the life of the structure. This study focuses on the fatigue life of two types of E-glasslphenolic GFRP (hand lay-up and pultruded) with special emphasis on the effect of environmental degradation on the fatigue life of pultruded GFRP. Fatigue life of pultruded GFRP was evaluated after treatment in salt water, hot water, freezethaw, and UV weathering. Static tests indicate that hot water (45°C) causes the higher reduction in tensile strength. The Young's modulus did not change significantly for any of the exposed specimens. Fatigue tests were conducted at constant amplitude at a frequency of 20H2, and S-N curves were developed for each exposure group. The results show that except for UV weathering, the fatigue life of all the exposed specimens exhibited slight statistically significant improvement for low stress fatigue tests. Residual strength tests conducted at 10% of ultimate strength exhibited no statistically significant (a=0.05) reduction in tensile strength or modulus at 3 million cycles of fatigue. The fatigue data was plotted using S-N diagrams and modeled using Loglinear equations. From the models, allowable strength for design purposes was recommended using statistical analysis. One-sided lower 95% tolerance limit for 95% of the population (5% LTL) were developed for pultruded control and hand lay-up specimens.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know