Enabling Sum Frequency Spectroscopy and Fluorescence Correlation Spectroscopy of Model Cellular Membranes
2013
- 120Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage120
- Downloads99
- Abstract Views21
Thesis / Dissertation Description
The majority of proteins secreted from cells contain a signal peptide sequence that is required for secretion mediated by the endoplasmic reticulum and Golgi apparatus. However, many proteins lack the essential signal peptide sequence, yet still undergo secretion. Such proteins are known to regulate cell proliferation, differentiation, and migration. Fibroblast growth factor 1 (FGF-1) is one protein which undergoes non-classical protein transport. The role of its interactions with the cellular membrane during non-classical protein transport is not fully understood, although FGF-1 has shown preferential destabilizing effects on artificial membranes composed of acidic phospholipids. In the present work, physiologically relevant model membrane systems have been developed and characterized in order to investigate the role of phospholipid:FGF-1 interactions in translocation of the protein across the membrane. In addition, a confocal z-scan fluorescence correlation spectrometer (z-scan FCS) and a sum frequency spectrometer (SFS) have been assembled, and temperature controlled liquid sample holders have been designed and fabricated. Z-scan FCS and SFS have been employed to characterize the model membrane systems and have been shown to be suitable tools for elucidating the role of specific phospholipid:FGF-1 interactions in transmembrane translocation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know