Emmy Noether's Theorem on Integral Invariants in the Context of the Calculus of Variations
2014
- 245Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage245
- Abstract Views242
- Downloads3
Thesis / Dissertation Description
Noether’s theorem, named for early twentieth century German mathematician Emmy Noether, is an important theorem in physics. Colloquially, Noether’s theorem states that a physical system with a symmetry property will have an associated conservation law and provides the means for determining it. Although an impressive derivation in its own right, the fact that the theorem’s author was a Jewish woman during a time in which both of these facets of her identity, particularly her womanhood, posed significant barriers to her advancement and acceptance in the held of mathematics, makes it all the more remarkable. A biographical sketch of Noether highlighting the inequities she faced is given in the first chapter of this paper.To fully appreciate Noether’s theorem, it is essential to view it in the context in which it was developed. Noether’s derivation of her theorem relied heavily on the calculus of variations and can be viewed as an extension of the subject. An account of the history of the calculus of variations until the beginning of the twentieth century, with an emphasis on the history of the Euler-Lagrange equations, is given in Chapter 2. During the early twentieth century, Einstein’s theory of general relativity was of great interest to many mathematicians and physicists and it served as inspiration for Noether’s work. Noether also used ideas from Lie theory in her derivation. Brief historical accounts of general relativity and of Lie theory are given Section 3.1.The final chapters of the paper focus on Noether's derivation of her theorem and the implications of her theorem. In her paper “Invariante Variationsprobleme” written on her theorem, Noether leaves out many of the mathematical steps necessary to obtain her results. An expanded account of her derivation is given in Chapter 3. In the following chapter, a demonstration of obtaining conservation laws from Noether’s theorem is given for several classic introductory physics problems.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know