An integer polynomial programming based framework for lifted MAP inference
Advances in Neural Information Processing Systems, Vol: 4, Issue: 0, Page: 3302-3310
2014
- 2Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2
- Abstract Views2
Conference Paper Description
In this paper, we present a new approach for lifted MAP inference in Markov logic networks (MLNs). The key idea in our approach is to compactly encode the MAP inference problem as an Integer Polynomial Program (IPP) by schematically applying three lifted inference steps to the MLN: lifted decomposition, lifted conditioning, and partial grounding. Our IPP encoding is lifted in the sense that an integer assignment to a variable in the IPP may represent a truth-assignment to multiple indistinguishable ground atoms in the MLN. We show how to solve the IPP by first converting it to an Integer Linear Program (ILP) and then solving the latter using state-of-the-art ILP techniques. Experiments on several benchmark MLNs show that our new algorithm is substantially superior to ground inference and existing methods in terms of computational efficiency and solution quality.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know