Efficient Modeling of Random Sampling-Based LRU Cache
2021
- 273Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage273
- Downloads215
- Abstract Views58
Thesis / Dissertation Description
The Miss Ratio Curve (MRC) is an important metric and effective tool for caching system performance prediction and optimization. Since the Least Recently Used (LRU) replacement policy is the de facto policy for many existing caching systems, most previous studies on efficient MRC construction are predominantly focused on the LRU replacement policy. Recently, the random sampling-based replacement mechanism, as opposed to replacement relying on the rigid LRU data structure, gains more popularity due to its lightweight and flexibility. To approximate LRU, at replacement times, the system randomly selects K objects and replaces the least recently used object among the sample. Redis implements this approximated LRU policy. We observe that there can exist a significant miss ratio gap between exact LRU and random sampling-based LRU under different sampling size K; therefore existing LRU MRC construction techniques cannot be directly applied to random sampling based LRU cache without loss of accuracy.In this thesis, we present a new probabilistic stack algorithm named KRR which can be used to accurately model random sampling based-LRU cache with arbitrary sampling size K. We propose two efficient stack update algorithms which reduce the expected running time of KRR from O(NM) to O(Nlog^2M) and O(NlogM), respectively, where N is the workload length and M is the number of distinct objects. Our implementation generates accurate miss ratio curves for both fixed and variable block size cache. Furthermore, we adopt spatial sampling which further reduces the running time of KRR by several orders of magnitude, and thus enables practical, low overhead online application of KRR.
Bibliographic Details
Michigan Technological University
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know