SYNTHETIC AUGMENTATION METHODS FOR OBJECT DETECTION IN OVERHEAD IMAGERY
2022
- 102Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage102
- Downloads67
- Abstract Views35
Thesis / Dissertation Description
The multidisciplinary area of geospatial intelligence (GEOINT) is continually changing and becoming more complex. From efforts to automate portions of GEOINT using machine learning, which augment the analyst and improve exploitation, to optimizing the growing number of sources and variables, there is no denying that the strategies involved in this collection method are rapidly progressing. The unique and inherent complexities involved in imagery analysis from an overhead perspective--—e.g., target resolution, imaging band(s), and imaging angle--—test the ability of even the most developed and novel machine learning techniques. To support advancement in the application of object detection in overhead imagery, we have developed a spin-set augmentation method that leverages synthetic data generation capabilities to augment the training data sets. We then test this method with the popular object detection networks YOLO, SSD, and Faster R-CNN. This thesis analyzes the synthetic augmentation method in terms of algorithm detection performance, computational complexity, and generalizability.
Bibliographic Details
Michigan Technological University
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know