Rejecting phosphorus in hematitic iron ore streams: Is flotation the best approach?
Minerals and Metallurgical Processing, ISSN: 0747-9182, Vol: 31, Issue: 3, Page: 143-148
2014
- 1Citations
- 1Usage
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- Usage1
- Abstract Views1
- Captures2
- Readers2
Article Description
It is widely known that steel made from iron ore pellets high in phosphorus is brittle. Removal of phosphorus from iron ores such as hematite has proven to be difficult. The majority of research on phosphorus removal from hematite ores has been focused on flotation. The purpose of this study was to assess phosphorus distribution under current operations at an existing hematite concentrator and determine how efficient the plant is at removing phosphorus. Objectives included: (1) Perform a phosphorus balance at an operating plant to assess phosphorus distribution under current operations; (2) Determine phosphorus removal efficiency of each separating unit and (3) Perform a quantitative liberation analysis to determine max phosphorus removal by physical means. Liberation was quantitatively determined using wet high intensity magnetic separation (WHIMS) to separate iron ore from liberated apatite (and other nonmagnetic compounds). It was observed that 61.2% of the total phosphorus entering Plant F was rejected during current operations. The desliming process was the most efficient step at removing phosphorus (45.1% P removed), whereas the flotation step was much less effective (16.1% P removed). Liberation analyses indicated that the deslime thickener may have been more efficient at removing phosphorus than the flotation circuit due to the greater abundance of liberated phosphorus in the deslime thickener feed. The scavenger returns stream was identified as having a high concentration of phosphorus and a possible point of phosphorus removal. However, liberation analyses indicated that only 32.4% of the total phosphorus in the stream was liberated. Grinding the scavenger returns to 80% passing 5.2 ìm increased the amount of liberated phosphorus in the stream to 70.4%. peer-reviewed and approved paper is invited and must be submitted Copyright 2014, Society for Mining, Metallurgy & Exploration Inc.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84906764622&origin=inward; http://dx.doi.org/10.1007/bf03402271; http://link.springer.com/10.1007/BF03402271; http://link.springer.com/content/pdf/10.1007/BF03402271.pdf; http://link.springer.com/article/10.1007/BF03402271/fulltext.html; https://digitalcommons.mtu.edu/michigantech-p/4582; https://digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=23884&context=michigantech-p; https://dx.doi.org/10.1007/bf03402271; https://link.springer.com/article/10.1007/BF03402271
Springer Nature America, Inc
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know