Characterizing Metabolic Alterations in Palbociclib-Resistant ER+ Breast Cancer
2024
- 20Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage20
- Abstract Views20
Artifact Description
Characterizing Metabolic Alterations in Palbociclib-Resistant ER+ Breast Cancer Jessica Shunnarah1, Susan M. Dougherty2, Yoannis Imbert-Fernandez31ULBB Program, 2Department of Medicine, University of Louisville AbstractDiverse mechanisms of resistance to inhibitors of cyclin dependent kinases 4 and 6 (CDK4/6) have been described including cell cycle alterations and metabolic changes. Palbociclib was the first CDK4/6inhibitor approved against estrogen receptor positive (ER+) breast cancer however, the development of resistance has limited its success. This study investigates the changes in the expression of key metabolic enzymes using an in vivo model of palbociclib resistance. Palbociclib-resistant patient derive xenografts (PDXs) were generated by treating NSG mice that had ER+ breast cancer was implanted into the mammary fat pat of NSG mice with palbociclib until the tumors grew in the presence of the drug.. At endpoint, the tumors were harvested, flash frozen, and pulverized for western blot analysis. Our analysis shows the up regulation in some of the metabolic enzymes. We have concluded that resistance to palbociclib ER+ breast cancer increases the expression of Glutaminase (GLS1) in the presence and absence of palbociclib. Palbociclib treatment also leads to an increase 6-phosphofructo-2 kinase/fructose-2,6-biphosphotase-3 (PFKFB3) and Glucose-6-phosphate dehydrogenase (G6PDH) and transketolase in both palbociclib-sensitive and palbociclib-resistant PDX models.Keywords: Palbociclib, estrogen receptor positive, patient derive xenograft, glutaminase, 6-phosphofructo-2 kinase/fructo, glucose-6-phosphate dehydrogenase
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know